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Abs t rac t .  We analyse the vacuum-polarization interaction energy (VPIE) of electri- 
cally neutral systems represented by Wilson loops (WLS).  Although small, the VPIE 
is a long-range interaction. This fact suggests that ,  in the absence of the classical 
dipole-dipole interaction, the cloud of virtual electron-positmn pairs around one W L  
can disturb the other. Hence, the  VPIE may be included in the physical explanation 
of forces, between neutral systems, with induced dipole behaviour. This VPIE is a 
static effect for separations beyond 2 ao (ao is the Bohr radius). Consequently, i t  is a 
complementary correction to the (retarded) Casimir-Polder atom-atom interaction 
which becomes important for separations beyond 13700. 

1. I n t r o d u c t i o n  

The  calculation of the  interaction energy between colour singlet mesons, idealized as 
Wilson loops (WLs), has revealed the existence of long-range forces with induced dipole 
behaviour [ l ,  21 (van der Waals interaction). In the Abelian model, the interaction 
between the WL was exactly computed since all functional integrals tha t  appear are of 
Gaussian type. The  result, after subtracting the kinetic and self-energy of the sources, 
is the classical dipole-dipole interaction [l-31. 

In this paper, we examine the contribution of the  quantum electrical dynami- 
cal (QED) vacuum polarization to the interaction energy between electrically neutral 
systems represented by WLs. The  correlation function of two WLs [4] is evaluated 
perturbatively, instead of using the usual approach where the WLs are expressed by 
external currents and  Gaussian functional integrals are performed in order to ob- 
tain the classical result. With the perturbative technique, the results of [l-31 for the 
Abelian model are obtained by performing only ordinary integrals over a single photon 
exchange, since, after expressing the integration around the contour rz in terms of 
the integral around the contour r, (figure 1)  by a convenient space-like translation, 
the perturbative series can be summed to all orders. 

The  perturbative approach is useful, since it enables us to include the photon self- 
energy correction. Hence, we can obtain the contribution of the vacuum polarization 

t Permanent address: Divisio de Fisica Tc6rica. Instituto de Esludos Avanpdos, Centro TCcnico 
Aeroespscid, Caixa Postal 6044, SSo JosC dos Campos. 12231 S i 0  Paulo, Brazil. 

0305-4470/9l/081759+1’2$03.50 @ 1991 IOP Publishing Ltd 1759 



1760 J Lucinda 

d 

Figure 1. 
separated by a space-like distance d. 

Rectangular WLS in the two-dimensional Euclidean subspace { e o , q }  

to the interaction energy, or vacuum-polarization interaction energy (VPIE), of two 
WLS separated by a spacelike distance d.  

The VPIE suggests that  the QED vacuum polarization may be a crucial ingredient 
to be added to the physical explanation of long-range forces, with induced dipole 
behaviour, between neutral systems with a very symmetrical distribution of charges. 

The outline of this work is a s  follows. In section 2 we compute perturbatively the 
correlation function of two WLs and the classical dipole-dipole interaction is obtained. 
The computation of the VPIE comprises section 3. The technique of dimensional 
regularization [5, 61 is used in order to cope with divergent integrals that arise in the 
algebraic treatment. Finally, in section 4, we present the concluding remarks. 

2. Interaction energy 

The interaction energy of two currents circulating around the rectangles rl  and r2 
separated by a space-like distance d ,  as shown in figure 1, is given by the correlation 
function of two Wilson loops [4] 

where the quantum average ( ) is given by the Euclidean generating functional of the 
quantized electromagnetic field 

(U(.%)) = J D [A,(Z)l exp (-i J d T )  U(A,) 

with U(A, )  denoting an observable. Since normalization is a matter of convention, 
by choosing an appropriate normalized functional measure D [ A , ( z ) ] ,  we can write 
the average in the denominator of (2.1) equal to unity, that is 
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including gauge fixing terms. 
The  representation of electrically neutral systems by means of WLS is useful since 

(2.1) manifestly exhibits the gauge invariance of the interaction energy. 
Usually, (2.1) is evaluated by expressing the WLS as external currents circulating 

around the rectangles of figure 1. With this approach the classical interaction energy 
can be exactly computed, since the functicnsl integrals are of Gaussian type [l-31. 
However as we will show here, with the perturbative technique we can include the 
photon self-energy correction and the tree approximation of the interaction energy 
can be  obtained by performing only ordinary integrals over a single photon exchange. 

The  quantized WL, as defined by Wilson [7], 

can be written as a perturbative series [S, 91. Due to the Abelian character of the 
theory, the contribution to all orders can be summed [8,10] and the tree approximation 
of (2.2) is given by 

WAC) = exp(W,) (2.3) 

where the subscript c means classical or tree approximation. W, is the single photon 
exchange contribution, 

where a and 0 are spacetime indices. The  dimension of integration over k is given by 
v and p is an  arbitrary mass parameter introduced in order to keep the charge dimen- 
sionless in v dimensions [ 5 ,  61. The factor arises because there are two equivalent 
choices of the origin in the parametrization of the contour. 

The  one-photon exchange contribution to (2.2) is given by W,, (2.4), where we have 
two integrations around the same contonr. But the one-photon exchange contribution 
to the interaction energy, (2.l), is given by 2W2 with one integration around each 
rectangle of figure 1. The factor two is introduced in order to cancel the factor $ 
of (2.4) because now we have only one choice of the origin in the parametrization of 
each contour. The  rectangles of figure 1 are contained in a two-dimensional Euclidean 
subspace {eo,el} of the space time R“ separated by a space-like distance d .  The 
integration around the rectangle T, can be written in terms of the integration around 
the rectangle TI (figure 1) by performing a space-like translation yl -+ yl + d ,  that  is 

(2.5) 

where 0 is the angle between the vectors (z - y) and k .  Due to the Abelian character 
of the theory, the fourth-order contributions, tha t  is the exchange of two photons, can 
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be written in terms of the one-photon exchange and the result is given by (W,)2 /2 .  
Moreover, the contribution to all orders can be written in terms of one-photon ex- 
change, (2.3). Hence the tree approximation of the interaction energy, (2 .1) ,  can be  
written as 

n 
L 

E,(d) = - lim -W, (2.6) T - m  T 

with (yl + d )  in place of (yl) in (2.4). After the integration over the angular variables, 
(2.4) can be written in the form 

where w = (klr, e = (4 - u ) / Z ,  and 

(2.8) 
2 r2 = (za - yo), + (zl - y1 - d)  . 

The remaining integrals of (2.7) are performed in appendix A and the dominant term, 
in the limit of T -+ M, tha t  is the  tree approximation of the interaction energy given 
by the correlation function of two WLS, is obtained 

where R is the space-like size of the rectangles of figure 1 and d is the space-like 
distance between them. Of course, we can write an arbitrary charge z'z"e2, with z' 
and 2'' integers, in place of e2,  since (2.3) is obtained by summing the perturbative 
series to all orders. We reproduced the result achieved by the approach where the 
WLs are expressed by means of external currents and the functional integrals are of 
Gaussian type [l-31. T h e  perturhative treatment presented here is useful, since i t  
enables us to include, in the  next section, the photon self-energy correction. 

3. Vacuum-polarization contribution 

If we include the photon self-energy correction, only one internal loop per exchanged 
photon, the perturbative series can be summed due to the Abelian properties of the 
theory. Hence, we obtain the one-loop approximation for (2.2) 

1 1 
W(c) = 1 + (W, +V2) + 5 (W, +wl)2 + j j  (W2 +w,)3+ . .  . 

(3.1) 
= exp (w, + W 2 )  

where W2 is the fourth-order contribution due to the insertion of the self-energy 
correction in a single photon exchange. The  integral over k can be carried out by 
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introducing polar coordinates in U dimensions. After performing the integral over the 
internal fermionic loop and over the angular variables we have [5 ,6,  111 

( 3 4  
where m is the mass of the electron. From (2.1), (3.1) and (3.2) we obtain the vacuum- 
polarization contribution for the interaction energy of the WLS of figure 1 
- 
E ( d )  = C(c)! 1' [(l - t ) - ' l 2  - (1 - t ) I I 2 ]  dt Im z-2Lsin(z)dz 

2 "0 "0 

The parameter C ( E )  is given by 

(3.3) 

(3.4) 

where y is the Euler's constant [12, 131, a is the fine structure constant, and r = 

From appendix B we have the finite part of the vacuum-polarization Contribution 
(4 - v)/Z. 

for the interaction energy [14] 

1 3 

+ LCC ($ + $) du (e-2B'"Ei(2BIu) + e2BL"Ei(-2Blu)} 
I=1  

( 3 . 5 )  
where 1, is the reduced electron Compton wavelength. In order to perform the nu- 
merical calculation of table l and the plots of (3.5) and (3.6) depicted in figure 2 we 
take R = 2a,, where a. is the Bohr radius. 

The behaviour of the remaining integral, 
3 m a 1  3 

~~ o - x ; r A l  (f + 4) du{e -2B'"Ei (2B,u)+e2B'"Ei ( -2BIu) )  
d 

F (J = - - 
\ A e /  J7r 07r 4-  J 1  \U- U - /  I=1  

(3.6) 
reflects, essentially, the overlap of the clouds with a non-uniform distribution of virtual 
charges around the WLS of figure 1. As shown in table 1 ,  the contribution of (3.6) 
for I = 2,3, that is F, (d/1,) and F3 (d/1J, are small when confronted with that of 
I = 1 ,  that is Fl (d/ie). From the confrontation of ( 3 . 5 )  with the classical result, 
(2.9), we obtain the order of magnitude of the vacuum-polarization contribution to 
the interaction energy 
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Figure 2. The vacuum-polnrization contribution to the interaction energy hetween 
the WLs of figure 1 is given by the full line. The dotted line is the contribution of 
(3.6). 

Table 1. Numerical values of (3.6) for I = 1 ( F l ( d / * * ) ) ,  I = 2 ( F 2 ( d / 3 = ) ) ,  I = 3 
(Fs(d/*=)) ,  s u m  of the three contributions ( F ( d / Z e ) )  multiplied by (a/%)(Sn)-' 
and the vacuum-polarization interaction energy, (3.5). In the numerical calculation 
we assumed R = 2 ao (GO i s  the Bohr radius). 

2.005 
2.010 
2.015 
2.020 
2.030 
2.040 
2.050 
2.060 
2.070 
2.080 
2.090 
2.100 
2.150 
2.200 
2.250 
2.300 
2.350 
2.400 
2.450 
2.500 
2.550 
2.600 
2.650 
2.700 
2.750 
2.800 

9.89043045 
5.76397526 
4.51249504 
3.84101343 
2.03807998 
2.52124143 
2.14104557 
1.84339893 
1.60160017 
1.40019584 
1.22935176 
1.08239901 
0.57641751 
0.28442249 
0.10199138 

-0.01648333 
-0.09468444 
-0.14628029 
-0.17972815 
-0.20053181 
-0.21240641 
-0.21702379 
-0.21891457 
-0.21668789 
-0.21220310 
-0.20615986 

0.12154372 
0.12093722 
0.12033440 
0.11973524 
0.11854818 
0.11737574 
0.11621786 
0.11507421 
0.11394464 
0.11282890 
0.11172714 
0.1106387'1 
0.10539469 
0.10046413 
0.09582741 
0.09146560 
0.08736135 
0.08349725 
0.07985816 
0.07642934 
0.07319715 
0.07014892 
0.06727245 
0.06455681 
0.06199147 
0.05956718 

-0.01350834 
-0.01347181 
-0.01343544 
-0.01339922 
-0.01332720 
-0.01325580 
-0.01318496 
-0.01311471 
-0.01304503 
-0.OlZ97621 
-0.01290765 
-0.01283966 
-0.01250774 
-0.01218884 
-0.01188226 
-0.01158748 
-0.01130373 
-0.01103053 
-0.01076740 
-0.01051412 
-0.01026962 
-0.01003382 
-0.00980625 
-0.00958671 
-0.W937453 
-0.00916953 

0.00061605 
0.00036208 
0.00028462 
0.00024321 
0.00010367 
0.00016176 
0.00013827 
0.00011986 
0.00010490 
0.00009243 
0,00008183 
0.00007272 
0.00004124 
O.WM4124 
0.00001346 
0.00000391 

-0.00000115 
-0.00000455 
-0.00000682 
-0.00000829 
-0.00000921 
-0.00000972 
-0.00000995 
-0.00000996 
-0.00000983 
-0.00000960 

0.12597206 
0.02758651 
0.01098269 
0.01284789 
0.00691238 
0.00438528 
0.00303742 
0.00222362 
0.00169151 
0.00132354 
0.00105827 
0.00086078 
O.OMu6236 
0.00017916 
0.00009632 
0.00005428 
0.00003138 
0.00001835 
0.00001074 
0.00000624 
0.00000358 
0.00000205 
0.00000120 
O.WooOo77 
0.00000061 
0.00000060 
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4. Concluding remarks 

The VPIE, equation (3.7), and the Casimir-Polder potential (CPP) [15-191 seem to 
have quite different physical meanings, since they behave asymptotically with different 
powers of l l d .  It is worth recailing that classical 'atoms' do not attract one another a t  
separations beyond a, (aG is  the Bohr radius), the (non-relativistic) van der Waals dC6 
interaction can be thought of as being a consequence of the uncertainty principle for 
particles. In the (retarded) Caimir-Polder dC7 atom-atom interaction, the crucial 
ingredient is the retardation time-the transit time of a photon-which occurs for 
d larger than about 137a,. The CPP can be thought of as having its origins in QED 
vacuum fluctuations, that is in the Uncertainty principle for electromagnetic fields. On 
the other hand, the VPIE given by (3.7) is a static effect which occurs for separation 
beyond 2a0 .  Hence it is a complementary correction to the CPP and the dominant 
Contribution for d > R = 2 aa is proportional to a multipole expansion 

From this equation we readily observe that the term in the asymptotic limit for a 
very large value of d is proportional to the classical dipole-dipole interaction. Further- 
more, the interaction is attractive since the dipolar moments of the systems analysed 
are parallel. 

Atoms are of course not static so that (3.7) does not entirely describe the vacuum 
contribution to the interaction energy, for example, of two helium atoms. If the 
two atoms, sufficiently far apart so that their wavefunctions do not overlap, are in 
their ground states, the dipole (and all higher-order multipole) moments of each atom 
vanish, and therefore the clouds of electrons have a very symmetrical distribution of 
charges. But, a non-vanishing interaction is obtained from the second order dipole- 
dipole perturbation [20]. 

In this context, we stress the fact that (4 .1)  gives a dipole-dipole term of order 
a for large values of d ,  that is d >> R = 2aa.  This means that,  if we discard 
the permanent interaction given by (2.9), the cloud of virtual electron-positron pairs 
around one WL, figure 1,  can disturb the other. Hence, the VPIE is capable of inducing 
a dipole moment between them. 

Although the representation of neutral systems by WLS is an extremely simple 
model, (4.1) leads to the conclusion that the QED vacuum polarization may be sig- 
nificant in the appearance of induced dipole moments. In that case, it must be 
added to the physical explanation of long-range forces, with induced dipole behaviour 
(van der Waals interactions), among neutral systems with a very symmetrical distri- 
bution of charges. 

For a non-Abelian theory, the exchange of two or more photons cannot be written 
in terms of one-photon exchange. Hence, the tree approximation contributions to all 
orders to (2 .1)  cannot be summed. 

The existence of van der Waals interactions in QCD for small coupling, [ l ,  21 due 
to colour effects, has emerged even for static mesons in the tree approximation, But 
before addressing the possible phenomenological consequences of van der Waals forces 
in QCD, we need a strong coupling calculation where confinement is taken into account 
ab initio. 
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The  vacuum-polarization effect in a non-Abelian theory, for example QCD, should 
be taken into account after a complete analysis of the tree approximation for any 
arbitrary value of the coupling. 

Appendix A. Integration over zo and y, around the rectangle I?, 

In the limit v - 4 ,  tha t  is for small E ,  we can write (2.7) in the form 

where in a two-dimensional space {eo, e,}, that  is around the contour r, (a = 0 , l )  of 
figure 1, we have 

2 2 = (xo - + (xl - Y, - d )  

and the integration over xo and ye are given by 

dX0 

-TI2 (20 - YO)' + (-+ - Y, - d)' 

dX1 

(-5 - YO) + (21  - ~i - d ) 2  
2 +r' 

- '& d X 1  

-RI2  

i -RI2 (5 - + (21 - Y, - 
After performing all the integrals over xo and xl, we obtain 

Yo + 5 arctan ( ) 1 

(Y, + d - f) + 
~ l + d - f  

(A.2)  
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- 1 arctan ( Yo + 5 ") 
( ~ , + d + + )  Y I + d + T  

1 arctan ( ~ i + d - ~  ") - 1 arctan ( y l + d + -  T ' )  + 
(Yo - T )  Yo - 1 (Yo - T )  Yo - 1 

- 1 arctan ( Y i + d - T  ") + 1 arctan ( Y l + d + ?  ")}. 
(Yo + 5) Yo + T (Yo + T )  Yo + T 

We have two integrals over y,, one for the path yo = (T/2)  + b and one other for the 
path yo = - (T/2)  - b ,  where 6 is a small constant. Half of the terms in the integrand 
of the sum of these two integrals cancel and the remaining terms are given by 

2 y2 dy, { -:arctan (" + 6"- ') + darctan ( y l + d + ~  ") 
-RI2 

1 y, + a -  - 1 Y l + d + T  + -arctan ( :) - -arctan ( ")} .  (A.5) 
T + 6  T + b  T + 6  T+6  

This integral gives no contribution for large values of T ,  that is 

( A 4  T-m T 

Finally, we perform the integrals over yo for the paths y1 = f R / 2 .  The non-null 
contribution in the limit of very large T ,  that is 

is given by 

T 4T = -~ 2T arctan (-) + -;rarctan ( 5 )  - X a r c t a n  (2) 
d + R  d + R  d - R  d - R  

+(terms that give no contribution to the interaction energy for large values of T ) .  

(A.8) 

Since 

w - 2 u  sin(w)dw . = r(2r + 1)sin 
0 
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we obtain the tree approximation of the interaction energy given by (2.1) 

E(d) = - lim -W 2 - lim ?{ 2 2 T [ ( d +  R)-'arctan (2) 
d + R  T - ~ T  2 - - ~ - m ~  24+ 

- 2d-Iarctan - + ( d -  R)-'arctan (A)]) (3 
that is 

Appendix B 

In the limit ofsmall <, that is in the limit U - 4, the integrand of (3.3) can be written 
in the form 

(.2 (L m2r2 + ")')-' 4m2r4 

where we take the value z = 1 after performing the integral over z 
Substituting (B.l)  into (3.3), for small e ,  gives 

where rz = (zo - yo)2 + (zl - y, - d)' and the index a = 0,1. 
The integration around the contour r, of figure 1, see appendix A,  gives 

3 1 - 
E(d) = 2 C ( r ) x {  --a (1 + !) A ,  + / ( t - ' I2  + t 1 1 2 )  d t  

0 k 1  
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where we used elementary properties of t he  hypergeoemtric function [13] in order to 
rewrite the integral over t .  The  terms with the index I = 1 , 2 , 3  are given by 

A, = - A 
d - R  d d + R  

A, = - A e  A ,  = - 2 A  

and 

where Ae is the reduced electron Compton wavelength. 

7 WO nhtiin the interartinn e n ~ r c v  

After a change of variable t - ' / ,  + U and to perform the integrations over z and 
0, -, _I _..- ... ""._"" _.._. 

m 

e2 - 3rr @ sa ?[(-; - l + l n  (s)) A, + :A,/ (&+ $) du 
0 I=1 

x { e - 2 B ' " ~ i ( 2 ~ i ~ )  + e2Blu R.I-9 R.w1\1 (B.4)  -" "-""l 
where E i ( i  

In order to obtain the finite part of the VPIE, (B.4) ,  we need to cope with arbitrari- 
ness inherent in the renormalization [21]. The  minimal substraction (MS) scheme has 
become standard specially in works on QCD. T h e  disadvantage is that the MS scheme 
tends to produce large coefficients in the perturbation expansion. On the other hand, 
if the coefficient 

) is the exponential integral function [12]. 

is sma:!ei than 0.2 the 'u":E becomes rep-;!eivi for large vaIGia of (d - E ) / > e .  Biit 
the dipolar moments of the system analysed are parallel and the interaction must be 
attractive. Hence we have a reasonable lower bound for this coefficient. In order t o  
perform the numerical calculation we take the value 113 after to discard the pole 1 1 6 .  

__-...--.._--~-~_-__ d. rknnw1domont.z "" 
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